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1. Two advisors with independent errors

Consider an action space A. (In other words, A is a random variable
whose value is the action taken.) Suppose that our true utility function
(whatever that means) is given by U : A → [−1, 1]. However, we are
unable to precisely specify our true utility function. We also have two
imperfect advisors (for instance artificial intelligences) who estimate
utilities using their estimated utility functions, f1, f2 : A→ [−1, 1].

Suppose further that the two advisors have independent error func-
tions. That is to say, the two random variables U(A) − f1(A) and
U(A) − f2(A) are independent. Note that this is a very strong as-
sumption, as we might expect the advisors to have convergent instru-
mental goals. The assumption is even stronger given our uncertainty
about the true utility function, U .

Define an fi-catastrophe as an action such that advisor fi thinks the
action is wonderful, but actually it is terrible. For concreteness, we say
that a ∈ A is an fi-catastrophe iff U(A) − fi(A) < −1. However, a
different threshold other than -1 could be chosen. Let pi be the prob-
ability that a randomly chosen action is an fi-catastrophe. Then by
the independence of the error functions, it follows that the probability
that an action is both an f1-catastrophe and an f2-catastrophe is the
product p1p2.

2. Ways to combine advice

We present several ways to combine the advice of the advisors. Then
we analyze the strengths and weaknesses of these ways of combining.
For concreteness, we will use the top 10% in these examples when
quantilizing, but a different quantile could be used.

2.1. Mutual optimization. Select an action a iff both advisors be-
lieve that it is the best possible action. Otherwise, take no action.
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2.2. Parallel quantilization. Obtain the recommendation of f1, that
is, the subset R1 ⊆ A that advisor f1 considers to be in the top 10%
of possible actions. Separately obtain the recommendation of f2, that
is, the subset R2 ⊆ A that advisor f2 considers to be in the top 10% of
possible actions. If the intersection R1 ∩ R2 is nonempty, then select
an action at random from this intersection. Otherwise, take no action.

2.3. Serial quantilization. First obtain the recommendations of f1,
that is, the subset R ⊆ A that advisor f1 considers to be in the top
10% of possible actions. Then present R1 to the second advisor f2 to
obtain the subset of S ⊆ R that f2 considers to be in the top 10% of the
actions in R. Select an action at random from S. Serial quantilization
could be done in either order – first f1 then f2 or first f2 then f1.

2.4. Averaging. Create a new advisor F by averaging the two ad-
visors: F = f1+f2

2
. (Alternatively, we could use the geometric mean

F =
√
f1f2 if the utilities were rescaled to all be positive. This would

put greater emphasis on the more pessimistic advisor for any given
action.) Then pick a random action that falls in the top 10% of all
actions according to F .

2.5. Analysis. Mutual optimization seems to not take advantage of
the independence of the error functions and often produces no con-
sensus. Parallel quantilization seems better, although it could fail to
produce a consensus, but that may be a sign that we just shouldn’t
trust either advisor. Indeed, perhaps we should only trust the result
of parallel quantilization if the size of R1 ∩R2 is much more than pro-
portions pi (the probabilities of disaster) relative to the size of each of
R1, R2. Serial quantilization favors one advisor over the other and could
fail if the first advisor returns all catastrophes – in this case we would
get an action but we’d be better off without an action. Averaging is
a less aggressive way of combining. I (Norman) am not immediately
sure how to do a precise analysis of all these ways of combining – per-
haps someone with more statistical background than me could help.
One thing to take into account would be the extent to which a given
advisor thinks an action is in the top quantile correlates with that ac-
tion actually being a disaster. We might suspect that advisors are less
accurate about what they think is the very best relative to middling
results – that’s part of the reason for quantilizing in the first place.

3. Cautionary example

It should be noted that independence of the error functions is differ-
ent from independence of the advisors. This is part of why it is hard to
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tell whether error functions are independent. For instance, suppose the
action is given by selecting an ordered pair of numbers: A = (a1, a2),
with a1, a2 ∈ [−1, 1] distributed uniformly. Suppose the true utility U
is given by

U(A) =

{
a1+a2

2
if a1 < 0.9 or a2 < 0.9

−1 otherwise.

Let f1(A) = a1 and f2(A) = a2. The two advisors are independent.
However, the error functions are dependent. Indeed, the set of f1-
catastrophes is identical to the set of f2-catastrophes, namely the subset
of A where a1, a2 ≥ 0.9.

4. Ideas for further analysis

The analysis of the ways of combining advisors requires much more
work. We should also analyze how useful these techniques are in the
case where the error functions are not completely independent. (But
we must be cautious because the small amount of non-independence
may influence the situations that we least want it to influence due to
convering instrumental incentives.) Given sufficient independence or
almost-independence assumptions, the analysis could also be extended
to more than two advisors.


